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SUMMARY 6 

 7 

The non-structural protein 4 (NSP4) has different roles in rotaviral replication, morphogenesis, 8 

and enterotoxin-like activity causing secretory diarrhea. A total of 11 partial nucleotide 9 

sequences of NSP4 coding gene were defined from group A rotavirus circulating in Brazilian 10 

swine herds. On comparing the viral sequences of diarrheagenic peptide area (amino acid 114-11 

135), there was a single point mutation at amino acid 135 presented by two strains with amino 12 

acid alanine, and valine in the others. The NSP4 gene phylogeny showed that all strains 13 

clustered into E1 genotype, and the nucleotide identity between Brazilian strains ranged from 14 

92.4% and 100%, while the putative amino acid identity, between 95.8% and 100%. As a 15 

conclusion, these data demonstrate the occurrence of a common NSP4 genotype described 16 

elsewhere in pigs and low diversity between the samples from the surveyed areas. 17 

 18 
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 20 

RESUMO 21 

 22 

A proteína não estrutural 4 (NSP4) desempenha diferentes funções na replicação e na 23 

morfogênese dos rotavírus, possuindo, ainda, uma atividade de enterotoxina, causando diarreia 24 

do tipo secretória. Um total de 11 sequências parcias de nucleotídeos do gene codificador da 25 

NSP4 de rotavírus suínos de criações brasileiras foram definidas como pertencentes ao grupo 26 

A. Comparando-se as sequências virais da área do peptídeo toxigênico, que compreende a 27 

porção entre os aminoácidos de 114 a 135, constatou-se uma única mutação pontual no 28 

aminoácido 135, sendo que duas amostras apresentaram alanina, e as demais, valina. A análise 29 

filogenética do gene demonstrou que todas as amostras pertencem ao genotipo E1, e que a 30 

identidade nucleotídica das amostras brasileiras variou de 92,4% a 100%, enquanto que a 31 

identidade de aminoácidos, de 95,8% a 100%. Assim, esses dados mostram a ocorrência de um 32 

genotipo comum da NSP4 já descrito anteriormente em suínos, com uma baixa diversidade 33 

entre as amostras encontradas.  34 

 35 

PALAVRAS-CHAVE: Genotipos. Proteína não-estrutural. Reoviridae. 36 

 37 



 

INTRODUCTION 38 

 39 

 Group A rotavirus (RV-A), members of the Reoviridae family, genus Rotavirus, are 40 

regarded as a major cause of gastroenteritis both in humans and animals worldwide 41 

(KAPIKIAN et al., 2001). The RV-A genome consists of 11 segments of double-stranded RNA, 42 

encoding six structural virus proteins (VP1-VP4, VP6 and VP7) and six non-structural proteins 43 

(NSP1-NSP6). The complete virus is a triple-layered particle, with VP4 and VP7 constituting 44 

the outer layer whose respective encoding genes are markers for P and G genotypes, 45 

respectively (KING et al., 2012). So far, 35 genotypes P and 27 G have been defined 46 

(MATTHIJNSSENS et al., 2011). The inner capsid protein VP6 important on host immunity 47 

and determines groups A-G, and more recently, a novel RV-H has been discovered (KING et 48 

al., 2012; MATTHIJNSSENS et al., 2012).  Genotypes previously described in pigs include 49 

G1, G2, G3, G4, G5, G6, G11 and G12, usually associated with P[6], P[7], P[13], P[19], P[23], 50 

P[26],  and P[27] (MATTHIJNSSENS et al., 2008b; TONIETTI et al., 2013).  51 

The non-structural protein 4 (NSP4), encoded by gene segment 10, has multiple functions 52 

in RVs morphogenesis and pathogenesis. It has an enterotoxin-like activity (BALL et al., 1996) 53 

and has been identified as a viroporin (HYSER et al., 2012). The peptide 114-135 is considered 54 

to trigger a signal transduction pathway as it increases intracellular calcium leading to chloride 55 

secretion, and therefore secretory diarrhea, as it has been shown in mice (BALL et al., 1996; 56 

HUANG et al., 2004; TIAN et al., 1995). Changes within this region have been associated with 57 

alterations in the toxigenic activity of NSP4 and virulence of RVs (BALL et al., 1996; ZHANG 58 

et al., 1998). So far 14 NSP4 genotypes have been defined from RV-A samples infecting  59 

Human and animal hosts (MATTHIJNSSENS et al., 2008a). 60 



 

The aim of this investigation was to sequence and analyze a partial fragment of NSP4 61 

gene of RV-A from different Brazilian pig herds to define their phylogenetic relations with 62 

other animal and human isolates described elsewhere. 63 

 64 

MATERIAL AND METHODS 65 

 66 

A total of 11 stool samples from pigs with diarrhea from three cities in São Paulo’s State, 67 

Brazil, were collected in 2008 and screened with polyacrylamide gel electrophoresis (PAGE), 68 

ELISA, and characterized in P and G genotypes as previously described (GOUVEA et al., 69 

1994a,b).  70 

Feces suspensions (v/v; 50%) were prepared with phosphate-buffered saline 0.01M, pH 71 

7.2, clarified at 5000g/15 min at 4ºC, and the supernatants used in the assays. 72 

Extraction of total RNA from the reference RVs strain (NCDV) and the supernatants of 73 

the field samples were carried out with TRIzol Reagent™ (Invitrogen, Carlsbad, CA, USA) 74 

according to the manufacturer’s instructions. 75 

For RT-PCR, 5.6µL of RNA solution was mixed with 1.4µL of DMSO and denatured at 76 

95ºC for 5 minutes and kept in ice. Then it was added to a solution of 1x First Strand Buffer 77 

(Invitrogen™), 1 mM of each dNTP, 10 mM DTT, and 1 μM of each primer targeting NSP4 78 

coding gene (10BEG16 and 10END722) as described by Lee et al. (2000) and 200U of reverse 79 

transcriptase (Invitrogen™), to a 13μL final reaction volume. This mixture was then heated at 80 

42°C for 1 hour and 70°C for 15 min at thermal cycler. 81 

PCR amplification was carried out by adding 5μL of cDNA of the RT reaction in a mix 82 

containing 1x PCR Buffer (Invitrogen™), 0.2 mM of each dNTP, 0.5 μM of each primer 83 

(10BEG16 and 10END722), as described by Lee et al. (2000), 2 mM of MgCl2, and 2.5U of 84 

Taq DNA Polymerase (Invitrogen™) and ultra-pure water for a final reaction volume of 50 μL. 85 



 

This mixture was heated at 94°C for 2 min, followed by 30 cycles each at 95°C for 45 s, 49°C 86 

for 30 s, 72°C for 1.5 min, and one cycle at 72°C for 10 min. The products of the PCR were 87 

resolved on a 1.5% agarose gel stained with 0.5μg/mL ethidium bromide. 88 

Amplicons of 725 bp in length were purified with Illustra GFX™ PCR DNA and Gel 89 

Band Purification Kit, according to the manufacturer’s instructions (GE Healthcare) and 90 

submitted to bi-directional sequencing with BigDye 3.1™ (Applied Biosystems, Carlsbad, CA, 91 

USA) according to the manufacturer’s instructions. The reaction products of the sequencing 92 

reactions were resolved in the automatic sequencer ABI-377™ (Applied Biosystems, Carlsbad, 93 

CA, USA).  94 

Nucleotide sequences obtained in this study (nt 66 to nt 566, using as reference Gottfried 95 

Strain accession number GU199490) (Table 1) were aligned among them and with 96 

representative strains belonging to different NSP4 genotypes according to Matthijnssens et al. 97 

(2008a) using Bioedit 7.0.5.3 software (HALL, 1999) and Clustal W 1.83 (THOMPSON et al., 98 

1994) downloaded from the NCBI GenBank database. The strains used were 99 

(genotype/accession number/host/strain): a) E1/ GU199490/ Swine/ Gottfried; b) E1/ 100 

DQ494398/ Bovine/ KJ75; c) E1/ AF144799/ Swine/ A411; d) E1/ D88831/ Swine/ OSU; e) 101 

E1/ X69485/ Swine/ YM; f) E1/ U59109/ Human/ M37; g) E2/ AF144805/ Bovine/ B223; h)E3/ 102 

AF144806/ Canine/ CU 1; i) E4/ AB065285/ Avian/ Ty 1; j) E5/ AF533535/ Lapine/ 160 01; 103 

k) E6/ DQ490560/ Human/ RV176 06; l) E7/ U96337/ Murine/ EC; m) E8/ EF442742/ Canine/ 104 

RV52 96; n) E9/ DQ534017/ Swine/ CMP034; o) E10/  FJ169862/ Avian/ 02V0002G3 and p) 105 

E12/ FJ347120/ Bovine/ Arg B383. 106 

The nucleotide and amino acid similarities were calculated using Bioedit v. 7.0.5.3 107 

software (HALL, 2009). The phylogenetic tree from nucleotide sequences was built using 108 

MEGA software version 4 (TAMURA et al., 2007) based on Neighbor-joining method using 109 

Maximum Composite Likelihood (1,000 bootstrap trials). 110 



 

RESULTS 111 

 112 

For the 11 samples, a common fragment of 501 nt (nt 66 to nt 566, using as reference 113 

Gottfried Strain accession number GU199490) from RVs NSP4-coding gene was investigated. 114 

The strain identification, P and G genotypes, and respective NSP4 gene accession numbers are 115 

shown in Table 1. The Genbank accession numbers for the NSP4 partial gene sequences of 116 

porcine rotaviruses determined in this study are: HQ840943, HQ840944, HQ840945, 117 

HQ840946, HQ840947, HQ840948, HQ840949, HQ840950, HQ840952, HQ840953, 118 

HQ840954. 119 

Nucleotide identity ranged from 92.4% to 100% while amino acid ranged from 95.8% to 120 

100%. The comparison of NSP4 genes sequenced in this study with other strains classified as 121 

genotype E1 from GenBank revealed a nucleotide identity ranging from 94.4% (strain PORV6 122 

with porcine strains Gottfried and OSU) to 84.1% (strain PORV9 with human strain EF672589) 123 

and amino acid identity ranging from 98.8% (strains PORV1; PORV2; PORV3; PORV4; 124 

PORV6; PORV7 and PORV11 with Venezuelan porcine strain AF165219) to 89.4% (strain 125 

PORV5 with human strain EF672589). 126 

Deduced amino acids of the sequences generated herein revealed a moderate variation 127 

among the strains (Fig. 1). Moreover, considering the toxigenic peptide (amino acid 114-135) 128 

it was shown that there was a single point mutation on aa 135 presented as alanine in two RV 129 

strains and as valine in the other strains. In addition, six other amino acid changes at residues 130 

136 (valine, alanine and serine), 137 (arginine and glycine), 139 (isoleucine and valine), 154 131 

(arginine and lysine), 161 (serine and asparagine) and 174 (serine and proline) were found. 132 

 The phylogenetic tree (Fig. 2) depicts that the strains of the present study clustered with 133 

E1 genotype representatives, while the others segregated in separate clusters with a resolved 134 

genealogy, according to its genotypes. 135 



 

DISCUSSION 136 

 137 

Among non-murine NSP4 amino acid sequences, most of the divergence was observed 138 

in the VP4-binding domain (aa 112-148) and in the double-layered particle-binding region (aa 139 

161-175) (IOSEF et al., 2002). Strains of the present study showed low degree of polymorphism 140 

in both regions, with four and two mutations respectively, as shown in Fig. 1.  141 

Strains PORV6 and PORV10 presented amino acid residue alanine at position 135, while 142 

the others presented amino acid valine. By comparisons of NSP4 sequences, Zhang et al. (1998) 143 

suggested that changes between amino acids 131 and 140 are important for viral pathogenesis, 144 

showing that a change from amino acid valine to alanine in the NSP4 protein at this position 145 

was important in OSU attenuated strains, as it was associated with loss of the ability of inducing 146 

diarrhea in mice, which was also observed in a piglet model with virulent and tissue culture-147 

attenuated human RVs Wa strains (WARD et al., 1996). On the other hand, Kirkwood et al. 148 

(1996) found isoleucine at position 135 in symptomatic children, as well as did Mascarenhas et 149 

al. (2007).  150 

Tyrosine residue at position 131 of NSP4 coding gene has been postulated to be critical 151 

for the diarrheagenic activity of the toxic peptide (BALL et al. 1996), but histidine was also 152 

found in diarrheic young children (CUNLIFFE et al., 1997; MASCARENHAS et al., 2007). 153 

Sequence analysis from porcine strains revealed amino acids serine, alanine and histidine at 154 

residue 131 (CIARLET et al., 2000; MATTHIJNSSENS et al., 2010; STEYER et al., 2007). In 155 

the present study, all strains showed histidine, as shown in Fig. 1. Therefore, the enterotoxin 156 

domain (aa 114-135) is conserved among them, except for one mutation at aa 135.  157 

Even though nucleotide and amino acid polymorphism were found both at the toxigenic 158 

peptide and VP6-binding domain (aa 112-175) observed in Fig. 1, it was not possible to 159 

speculate on the significance of these changes for the virulence of the RV strains since all the 160 



 

animals studied had diarrhea. In other studies, this correlation between virulent and attenuated 161 

strains was not observed (ANGEL et al., 1998; WARD et al., 1997), showing the possibility 162 

that virus attenuation can occur by several mechanisms, including mutations in other viral 163 

proteins. Moreover, the extreme C terminus, including aa methionine at position 175 was shown 164 

to be important for double-layered particle (DLP)-binding activity (TAYLOR et al., 1992). As 165 

shown in Fig. 1, all the porcine strains presented methionine at this site. 166 

This study revealed the occurrence of genotypes G10 and G11 in association with P[6] or 167 

P[7] in the swine population. G10 genotype has been widely detected in bovine rotaviruses in 168 

Brazil (ALFIERI et al., 2004) and other countries (FALCONE et al., 1999; GARAICOECHEA 169 

et al., 2006; HOWE et al., 2008), and also in humans (RAMANI et al., 2009; URASAWA et 170 

al., 1993). A study in Thailand also revealed this genotype in pigs (PONGSUWANNA et al., 171 

1996). 172 

G11 rotaviruses were first detected in pigs in Mexico and Venezuela (CIARLET et al., 173 

1994; ROSEN et al., 1994; RUIZ et al., 1988) and are believed to be circulating in this 174 

population, although in low numbers. In subsequent years, no additional G11 strains were 175 

detected in the same or nearby pig farms, but in the last decade, several reports have described 176 

the isolation of G11 RVs strains from humans (MATTHIJNSSENS et al., 2010). These authors 177 

also showed that multiple reassortment events have occurred between porcine or human G11 178 

rotaviruses and co-circulating human Wa-like RVs strains.  179 

The phylogenetic tree (Fig. 2) showed that the circulating Brazilian RVs strains belong 180 

to E1 genotype, also reported elsewhere in humans, swine, equine, and bovine 181 

(MATTHIJNSSENS et al., 2008a), reinforcing the association between E1 genotype and pig 182 

RVs previously described. Although evidences for independent segregation of the VP6- and 183 

NSP4-encoding genes have been described in porcine RV-A (GHOSH et al., 2006; ITURRIZA-184 

GÓMARA, 2002), considering the limited number of surveyed samples and occurrence of 185 



 

undefined P and G genotypes, it was not possible to observe this pattern among Brazilian 186 

samples. 187 

Interspecies transmission of rotaviruses may occur in natural and experimental conditions 188 

(MARTELLA et al., 2010). The introduction of a new human-animal reassortant RVs strain 189 

into the human population could have an impact on the spread of rotavirus disease and also on 190 

prevention measures (STEYER et al., 2008). This study also revealed (data not shown) that 191 

strain PORV6 had 96,4% amino acid identity with Brazilian strain NB-150, a human strain 192 

previously isolated by Mascarenhas et al. (2007) from a newborn with diarrhea who lived in 193 

the outskirts of Belém do Pará, Brazil, that reinforce the hypothesis that interspecies 194 

transmission may occur naturally, without loss of virulence (VARGHESE et al., 2004).  195 

There are numerous examples of RVs interspecies transmission, but there are few 196 

documented evidences in which whether the transmission event has involved the whole genome 197 

(PALOMBO, 2002). In fact, pigs may serve as a reservoir of RVs for humans, as described by 198 

several authors in different countries, such as India, Ecuador and Hungary (BANYAI et al., 199 

2004; BANYAI et al., 2009; VARGHESE et al., 2004). It has been proposed that human RVs 200 

Wa-like strains and swine strains have a common origin (MATTHIJNSSENS et al., 2008b), 201 

and, recently, a new virus isolated from pigs was closely related to a novel group of human 202 

rotaviruses (WAKUDA et al., 2011).  203 

 204 

CONCLUSIONS 205 

 206 

As a conclusion, NSP4 genes of porcine RVs isolated in Brazil during 2008 had only a 207 

moderate polymorphism and belonged all to E1, in an extent previously unknown in this 208 

country. 209 

  210 
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TABLE 1 382 

 383 

Strain Genotype P Genotype G NSP4 Accession number 

PORV1 P[6] G[11] HQ840943 

PORV2 P[6] G[11] HQ840944 

PORV3 P[6] G[11] HQ840945 

PORV4 P[6] G[11] HQ840946 

PORV5 - - HQ840947 

PORV6 - G[10] HQ840948 

PORV7 P[7] - HQ840949 

PORV8 P[6] - HQ840952 

PORV9 P[7] - HQ840950 

PORV10 P[7] G[10] HQ840953 

PORV11 - G[10] HQ840954 

 384 

Table 1: P and G genotypes and accession numbers of partial NSP4 sequences RVs from 385 

piglets samples in São Paulo State, Brazil. Gaps indicate genotypes that were not defined. 386 
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FIGURE 1 388 

 389 

 Fig. 1. Section of the alignment of the deduced 175 amino acids (aa 9-175) of the NSP4-coding 390 

gene from rotavirus detected in porcine stool samples from Brazilian herds. The marked area 391 

refers to the toxigenic peptide (residues 114 to 135). 392 
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FIGURE 2 395 

 396 

 397 

Fig. 2. Unrooted neighbor-joining tree for a stretch of 501 nucleotides (nt 25-525) of the NSP4-398 

coding gene, showing the proposed E genotypes. Taxa designated as "PORV (1 to 11)" are 399 

related to the Brazilian field strains from the present study; numbers at each node are the 400 

bootstrap values greater than 50% obtained with 1,000 replicates. 401 


